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LETTER TO THE EDITOR 

Pattern retrieval in an asymmetric neural network with 
embedded limit cycles 

Yuhei Mori, Peter Davis and Shigetoshi Nara 
ATR Optical and Radio Communications Research Laboratories, Sanpeidani, Inuidani, 
Seika-cho, Soraku-gun, Kyoto, 619-02, Japan 

Received 9 January 1989 

Abstract. A neural network model in which the connection matrix is formed by summing 
direct products of successive patterns in cyclic sequences is studied. I t  is found that the 
noise elimination performance of this model can be better than that of an autocorrelation 
model due to a reduced tendency for trapping in spurious attractors. 

The problem of recall of memorised patterns from noisy input in neural network 
models has a long history (Nakano 1972, Amari 1972, Anderson 1972, Kohonen 1972, 
Hopfield 1982). In particular, memory capacity and statistical properties of symmetric 
autoassociative networks have been extensively investigated (Amit 1987 and references 
therein). Hopfield ( 1982) introduced an energy-like Lyapunov function and a statistical 
physics methodology to describe the relaxation of symmetric networks. The perform- 
ance of symmetric networks as memory is impaired by trapping at local energy minima. 
In memory models there is the problem of distinguishing between spurious minima 
and minima corresponding to stored memories. Much work has been done on the 
origins and nature of spurious minima (Amit 1987) and their temperature dependence 
(Amit et a1 1985, 1987, Feigelman and Ioffe 1986). A small amount of noise can assist 
escape from shallow local minima. Annealing in which the thermal noise temperature 
is reduced according to some cooling schedule has been proposed to help convergence 
to deep minima (Ackley et a1 1985). In asymmetric networks there is no known 
Lyapunov function guaranteeing convergence to a fixed pattern attractor. More compli- 
cated dynamical behaviour is possible. Some studies have considered the effect of a 
percentage of asymmetric connections on autocorrelation memory retrieval perform- 
ance (Hopfield 1982). Adding a weak random asymmetry to a symmetric network can 
have an efFect similar to increasing the level of noise (Feigelmann and Ioffe 1987). 
Other studies have used non-symmetric networks from a different point of view. 
Shinomoto (1987) used an assumption that each synapse must be either excitatory or 
inhibitory to form an asymmetric memory matrix for which the multiplicity of spurious 
attractors are removed-the system either converges to one of the memorised patterns 
or to a homogeneous ‘don’t know’ state. Parisi (1986) proposed that temporal instability 
due to strong asymmetry could be useful in the learning process, with the metastability 
of memory states serving to distinguish them from other ‘chaotic’ states. Non-symmetric 
matrices, in which a symmetric contribution causes convergence toward a stationary 
pattern and an asymmetric part causes transitions between patterns, have been used 
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in models of temporal pattern sequence generation. There are a number of models 
which either use non-symmetric synaptic interactions with temporal features such as 
dynamic synaptic strength ( Peretto 1986), or time-delayed transmission (Meinfield 
1986, Sompolinsky and Kanter 1986, Gutfreund and MCzard 1988), or use thermal 
noise to induce transitions (Buhmann and Schulten 1987). These models and others 
(Personnaz et al 1986, Dehaene et a1 1987, Guyon et a1 1988) address the interesting 
issue of the possible roles and properties of pattern transitions, cycles and more 
complicated dynamical behaviour in neural networks. 

In this letter, we address the question of whether retrieval performance in syn- 
chronous associative memories can be improved by storing patterns in the form of 
heterocorrelation cycles without an explicit autocorrelation part. In particular, will 
the tendency for trapping in spurious attractors increase or decrease? 

We consider a model in which the synchronous time evolution of the firing pattern 
in a neural network is described by 

where 

i = l - N  
S F {  1 

-1 

and N is the number of neurons. The patterns to be memorised are used to form the 
matrix J by summing direct products of pairs of patterns tp*” and f”””+’: 

p = l  u = l  

The patterns are organised in cycles, as illustrated in figure 1. p is the cycle label and 
v is the pattern label understood to be taken mod L. L is the number of patterns in 
one cycle and K is the number of cycles. The total number of stored memory patterns 
is M = KL. The diagonal elements are set to zero, Jii = 0, as in the biologically motivated 
autocorrelation models (Hopfield 1982). The synchronous autocorrelation model in 
which the matrix J is symmetric corresponds to the case L = 1.  In the L = 1 case there 
are only fixed-point or, more rarely, period-two attractors (Goles-Chacc et a1 1985). 
For L >  1 ,  since the matrix J is typically not symmetric, there is the possibility of more 
complicated asymptotic orbits, such as cycles and chaos. 

v = l  
16) 

p = l  p=2 
Figure 1. Example of cycles to be stored in a J matrix. p is the cycle label and Y is the 
pattern label. Each direct product pair is shown by an arrow. 



Letter to the Editor L527 

Starting from an initial pattern which is one of the memory patterns with added 
noise, the memory pattern or ‘target’ is retrived by iterating equation (1). Retrieval is 
successful if the noise is eliminated. Retrieval is unsuccessful when the iterated pattern 
converges to the same cycle as the target but with a phase slip, or to one of the other 
L - 1 memorised cyles, or to some other ‘spurious’ attractor. Among the spurious 
attractors observed in numerical experiments are cycles with period L and, less often, 
cycles with longer period-typically small integral mutliples of L, but also, occasionally, 
very long cycles. Our object here is not to report details of the spurious attractors but 
to report a statistical evaluation of their effect on memory retrieval. In this sense we 
compare the noise elimination performance of the limit cycle model with the known 
performance of the autocorrelation model. When memory patterns are chosen ran- 
domly the retrieval performance is known to depend on the pattern ratio a = M / N .  
In the autocorrelation case, at the intermediate value of a = &the existence of numerous 
spurious attractors significantly reduces the percentage of cases in which retrieval is 
successful (Kinzel 1985). We shall compre the performance of autocorrelation and 
cycle memory in this intermediate a case. We set N = 400 neurons and M = 30 patterns. 
The M stored patterns were chosen randomly, so their overlaps approximately obeyed 
a Gaussian distribution with zero average overlap. 

Choosing one of the memory patterns as a target pattern, say [R,r, pattem v = r in 
cycle p = R, and choosing an overlap value qo, we randomly generate an ensemble of 
initial states S ( 0 )  with the specified overlap q(0 )  = N-’S(O) gR7‘ = qo. Note that the 
overlap with the other patterns (p,  U) # (R, r)  is O(N-1’2). For each initial state we 
iterate equation (1) until the overlap defined as q( t )  = N - ’ S ( t )  (R*r+‘ converges to a 
cycle, or until the number of steps t = 300. We then average the overlap over L steps 
and call it the retrieval overlap. In defining the retrieval overlap we took into account 
two points. First, in the case of successful retrieval convergence is typically fast, 
occurring in t=3-9  steps. Secondly, the measure of cases at this value of a with 
period greater than L is small. For example, in the case of initial overlap of 0.2, 76% 
go to memory cycles, 21% to spurious cycles of period L, 3% to longer cycles. The 
ensemble retrieval overlap obtained by averaging the retrieval overlap over the 5000 
runs is plotted against intial overlap in figure 2 for the cases (M = 30, L = 1, K = 30), 
( M  = 30, L = 3, K = 10) and ( M  = 30, L = 10, K = 3). The results in figure 2 show that 
the retrieval performance is better the longer the length L of the memory cycle. 

Next we investigate this difference in performance by plotting in figure 3 a histogram 
of retrieval overlaps for the case of initial overlap qo = 0.2. In the autocorrelation case 
L = 1, 84% of trials resulted in convergence to patterns other than the target pattern. 
Most of these are spurious attractors with retrieval overlap about 0.4. The results for 
the cases of L = 3, L = 10 show that as cycle length increases the percentage of successful 
retrievals increases, and the percentage going to spurious attractors decreases. 
Moreover, the overlap of the spurious attractors with the target pattern decreases. In 
the case of L = 10, the retrieval overlap distribution of the 8% of trials which do not 
converge to the target is centred on zero overlap. 

Why does retrieval performance improve with cycle length? Note that as the 
definition of retrieval overlap depends on the phase of the target cycle the improvement 
in performance is not just due to the decrease in number of attracting cycles. One 
way of thinking of the improved performance is in terms of a sort of pattem-shuffling 
effect. This is illustrated schematically in figure 4. The closed curves indicate the 
attracting basin boundary for a number of memorised patterns in the autocorrelation 
L =  1 case (Amari and Maginu 1988). The basins typically have complex shape and 
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Figure 2. The ensemble retrieval overlap against initial overlap. The retrieval overlaps are 
averaged over the 5000 runs. A,  autocorrelation; 0,3 patterns x 10 cycles; .,IO patterns x 3 
cycles. 
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Figure 3. A histogram of retrieval overlaps for the case of initial overlap q,, = 0.2. Symbols 
as in figure 2. 
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Figure 4. A schematic illustration of pattern shuffling in the cycle memory. The closed 
curves indicate the attracting basin boundary for each of the memorised patterns in the 
autocorrelation case. The full line indicates the converged orbital and the broken line the 
tangent orbital. 

there are many orbits which are trapped close to a memorised pattern but outside its 
basin of attraction. If the memory patterns are instead stored in a cycle, orbits do not 
get trapped near the basin boundary of a single pattern, but visit the neighbourhoods 
of each memory pattern in the cycle, with a net increase in the number of orbits which 
converge to the target pattern. We suspect the shuffling of orbits due to cycling has a 
somewhat similar effect to that due to thermal noise in the L = 1 case. We can express 
this idea a little more explicitly as follows. The evolution of the overlap with the target 
pattern is given by equations (4) and ( 5 )  for the autocorrelation and cycle cases 
respectively. For the autocorrelation case, assuming the target is pattern R and 
dropping the Y label, 

N C  > 
q ( R :  r +  1) = N - ’ ( t R  S(t+l ) )  = N-‘  2 sgn{ (tRS(r)+ t”5t(fp. S ( t ) } .  (4) 

i = l  p # R  

For the cycle case, assuming the target pattern is pattern r in cycle R, 

q(R,  r :  t +  1) = ~ - ‘ ( t ~ * ~ + ’  - s(r+l)) 

= N-1 c sgn (89’ - s(r)+ t ~ . k + l g v + l ( p v  s ( t ) ) .  ( 5 )  
i = l  ” I  ( P .  U )  + ( R , k )  

The first term inside the curly bracket is the molecular field for the target pattern. The 
bigger the overlap the more dominant this term. The second term inside the curly 
bracket has the potential to detract from the first term. In the autocorrelation case 
L = 1, it is possible that for some i in equation (4), ,$.$ and (6”” * S( t ) )  have opposite 
sign for a number of p and thus that the second term inverts the effect of the first 
term even if the overlap (tp*” - S( t ) )  is small for p # R. Near a spurious attractor, this 
happens every iteration for particular i. However, in the cycle case, L # 1, since iteration 
replaces t P k + l  by [Pk+*,  it becomes less likely that, for successive iterations, ~ ~ “ ’ ~ ~ ’ ’ + ’  
and ([”*’ - S( r))  have opposite sign for enough p to result in the inversion of the first 
term. Thus we expect the reduction of the tendency for trapping in spurious attractors 
to be due to the dynamic self-averaging effect of the interchange of patterns in the 



L530 Letter to the Editor 

second term. We believe a similar effect is seen in the multilayer feedforward network 
of Meir and Domany (1988). Use of memory cycles is a simple way of realising this 
effect in a single-layer recursive network. The modulation of the second term by pattern 
cycling has a somewhat similar effect to that of thermal noise aiding the escape from 
spurious local energy minima in the autocorrelation (L = 1 )  case. Since the significance 
of the modulation of the second term decreases as the pattern converges to the target, 
this effect can be thought of as 'self-annealing'. 

Description of overlap dynamics using equations of type (4) and ( 5 )  have used 
various approximations to express this effect via the second term of the overlap with 
other patterns (Amari 1977, Kinzel 1985, Amari and Maginu 1988, Meir and Domany 
1988). Amari (1977) and Kinzel (1985) derived the following equation for the case 
when the second term in equations (4) and ( 5 )  is assumed to be a random term obeying 
a Gaussian distribution: 

q ( t + l )  =erf(q(r) /u)  U=-. (6) 

At the level of equation (6), the difference between the autocorrelation and cycle cases 
cannot be seen. Amari (1988), approximately in the autocorrelation case, and Meir 
and Donany (1988), exactly in the multilayer case, have improved on (6) by deriving 
step-dependent a( t ) .  To examine the dynamical effect of the second term in equations 
(4) and ( 5 )  we look at the overlap dynamics in our numerical example with N = 400, 
M = 30 using a Lorentz plot of overlap at time t against overlap at time ( t  - 1 ) .  This 
is shown in figure 5 ,  with overlap at t expressed as 8 = cos-'(q(t)). Figures 5(a, b)  
correspond to the cycle case L =  10, and 5(c ,  d)  correspond to the autocorrelation 
case. The results for initial overlaps qo = 0.2 and 0.4 are represented. In each case the 
orbits for 100 different initial patterns are plotted. For initial overlap 0.4 most orbits 
monotonically converge to the target pattern, where 8 = 0. For initial overlap 0.2, the 
convergence is not necessarily monotonic, and a proportion of orbits converge to 
spurious attractors. The full line in the figures corresponds to equation (6). In each 
of the four examples in figure 5 ,  the first iteration is consistent with the formula in 
equation (6), as the initial patterns are chosen randomly. However, from the second 
iteration the convergence is slower (i.e. closer to the line Or+' = 8,) than the full line 
due to the appearance of non-zero overlaps with patterns other than the target pattern, 
and the corresponding increase in the value of the second term in equations (4) and 
( 5 ) .  Near the target pattern, 8 = 0, where the value of the second term is small, the 
Lorentz orbit again approaches that for the full curve. Comparing the plots for limit 
cycle and autocorrelation cases, we see that when the overlap is large the orbits in the 
two cases in figures 5(a, c )  are similar, but when the initial overlap is small as in 5(b, d )  
and the effect of the second term is more significant the difference in orbits is 
considerable. The convergence is slower for the autocorrelation case. In many cases 
the orbit gets trapped in a spurious attractor near 8 = 50". For the cycle case, however, 
over 90% of orbits go to the target at 8 = 0. The remainder go to spurious attractors 
near 8 = 90". 

Finally, let us comment on the models of sequential transition with delay. In this 
class of models (Kleinfield 1986, Sompolinsky and Kanter 1986, Gutfreund and Mtzard 
1988), in addition to a autocorrelation component associated with q (  t )  there is a hetero 
component, relatively weighted by a factor A, associated with q( t - T), where T is the 
delay. For large enough delay T >> 1, the system settles at one target pattern for a time 
and then makes a transition to another. The behaviour on long timescales can be 
described by a strobe map relating the overlaps on successive patterns. The strobe 



Letter to the Editor L531 

0 90 0 
et 

90 

Figure 5. Lorentz plots of overlap at time r against overlap at time ( t  - 1). The overlap at 
r is expressed as 0 =cos-' ( q ( r ) ) .  Here, ( a )  and ( b )  correspond to the cycle case L = 10, 
and (c )  and ( d )  correspond to the autocorrelation case. The results for initial overlaps 
qo = 0.2 are presented in ( b )  and (d )  and for qo = 0.4 in (a )  and ( c ) .  

map obtained in a fully diluted model (Gutfreund and MCzard 1988) corresponds to 
(6) in the limit of infinite A. Also, a correspondence valid for all A holds at the fixed 
points, with a redefined factor U which includes A. The threshold value of M /  N below 
which there is a non-zero fixed point in equation (6) is one measure of capacity. It is 
found that this capacity improves for finite A (Gutfreund and MCzard 1988), meaning 
that it is possible to store more patterns by storing them in sequences. This improvement 
in capacity seen already at the level of approximation of equation (6) is of different 
origin to the improvement in retrieval characteristics demonstrated in our model which 
is due to reduction of trapping in spurious attractors. The addition of thermal noise 
has been found to help avoid spurious attractors in a delay-type model (Gutfreund 
and Mizard 1988). It would be productive to investigate the retrieval performance 
and nature of spurious attractors in the delay-type models in the light of our results. 

In conclusion we have shown on the basis of numerical experiment that retrieval 
performance in associative memories can be improved by storing patterns in the form 
of heterocorrelation cycles rather than in autocorrelation form and that this is due to 
the reduction of the tendency for trapping in spurious attractors. A qualitative explana- 
tion of this effect was given in terms of pattern cycling causing 'self-annealing'. A 
more rigorous analysis of this effect is left for future work. In related work we have 
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studied a cycle model in which varying a system parameter (such as synaptic connection 
range) causes the destabilisation of the cycles and bifurcation to chaos (Nara and 
Davis 1989). We aim to apply complex dynamical memory structure, including 
multiple-period spurious attractors and chaos, in experiments with novel non-von 
Neumann information processing functions. 

The authors are grateful to S Shinomoto and K Ikeda for stimulating discussions on 
related topics in neural nets and complex dynamics. 
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